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Abstract

DNA sequencing technologies provide unprecedented opportunities to analyze within-host evolution of microorganism
populations. Often, within-host populations are analyzed via pooled sequencing of the population, which contains
multiple individuals or “haplotypes.” However, current next-generation sequencing instruments, in conjunction with
single-molecule barcoded linked-reads, cannot distinguish long haplotypes directly. Computational reconstruction of
haplotypes from pooled sequencing has been attempted in virology, bacterial genomics, metagenomics, and human
genetics, using algorithms based on either cross-host genetic sharing or within-host genomic reads. Here, we describe
PoolHapX, a flexible computational approach that integrates information from both genetic sharing and genomic
sequencing. We demonstrated that PoolHapX outperforms state-of-the-art tools tailored to specific organismal systems,
and is robust to within-host evolution. Importantly, together with barcoded linked-reads, PoolHapX can infer whole-
chromosome-scale haplotypes from 50 pools each containing 12 different haplotypes. By analyzing real data, we un-
covered dynamic variations in the evolutionary processes of within-patient HIV populations previously unobserved in
single position-based analysis.
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Introduction
Microorganisms are in a constant state of genetic flux in
response to their environments. High-resolution analyses of
these systems may lead to translational applications, such as
clinical monitoring of antimicrobial resistance trends (Hofer
2019). However, analyzing within-host dynamics and evolu-
tion is challenging due to the difficulty of separating samples
into genetically homogeneous isolates/clones, either by

experimental procedures such as culturing individual strains,
or current computational tools, which are unable to distin-
guish between many clones when haplotypes are unknown.
As a pragmatic alternative, uncultured mixtures of the het-
erogeneous population are sequenced and analyzed based on
aggregated frequencies at each segregating sites in individual
hosts. This procedure ignores the fact that long-range linkage
information is crucial in to many different analyses toward
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evolution (Sabeti et al. 2002; Voight et al. 2006) and associa-
tion mapping (Datta and Biswas 2016). Recent advances in
DNA sequencing technology led to increases in the sequenc-
ing depth per run and the length of reads, allowing us to
assess genetic variants in greater detail, providing an unprec-
edented opportunity to understand the dynamics and evo-
lution of these systems. Emergent single-molecule sequencing
approaches that barcode short reads derived from long DNA
fragments up to 50 kb (i.e., linked-reads) (Zheng et al. 2016;
Chen et al. 2020; Wang et al. 2019), allow in-depth evolution-
ary studies into complex populations that were unresolvable
from short fragment libraries (250 bp).

However, even with barcode-based linking, full resolution
of short reads into long-range haplotypes is not feasible with
current approaches. Although third-generation technologies
such as Pacific Biosciences and Oxford Nanopore Technology
(Weirather et al. 2017), produce very long reads that repre-
sent local haplotypes, computational analysis will still be es-
sential for resolving haplotypes and estimating their relative
proportions in the pool. Without this haplotype-level resolu-
tion, within-host dynamics cannot be analyzed as if the hap-
lotypes were separated and sequenced individually. Even with
barcoded linked-reads designed for single-molecule sequenc-
ing, the current tools are only applicable in a two-haplotype
system, as it was designed for analyzing paternal and maternal
chromosome (Mostovoy et al. 2016) and structural variants
(Elyanow et al. 2018). Therefore, microorganism-based studies
resort to computational tools to make single-cell-like analyses
possible (Danko et al. 2019).

Many tools have been developed to reconstruct haplo-
types using algorithms that target data from viruses, bacteria,
metagenomic data, and historically, artificially pooled human
genomes. Conceptually they can be split into two categories.
The first contains statistical models utilizing haplotype-block
sharing between individuals (“statistical linkage disequi-
librium” or “statistical LD” hereafter), mostly developed in
human genetics (Long et al. 2011; Long 2017). The second
contains computational algorithms that leverage minor allele
frequency and sequence reads exposing the co-occurrence of
multiple alleles on the same haplotype (referred to as
“physical linkage disequilibrium” or “physical LD” hereafter),
mostly tailored to uncultured sequencing of viruses or bac-
teria (Huang et al. 2011; Prabhakaran et al. 2014; Pulido-
Tamayo et al. 2015; Albanese and Donati 2017;
Artyomenko et al. 2017; Posada-Cespedes et al. 2017; Ahn
et al. 2018; Knyazev et al. 2018, 2020; Li et al. 2019; Nicholls
et al. 2019; Ke and Vikalo 2020). A more detailed overview of
these methods is available in the supplementary section I,
Supplementary Material online.

There is a disconnect between these two approaches, and
both have limitations. Methods based on genetic sharing do
not consider pool-specific dynamics that can be captured by
sequencing reads, and are ineffective when there is strong
within-host evolution that changes allele distributions. In ad-
dition, the underlying population genetic models developed
in human genetics may not fit in microorganisms well. For
instance, many microorganisms exchange genetic materials
through gene conversions (Santoyo and Romero 2005),

instead of meiotic recombination as assumed by many phas-
ing tools (Browning and Browning 2011). On the other hand,
methods based on genomic reads only work on one pool a
time, without taking advantage of genetic sharing caused by
transmission between hosts (Cudini et al. 2019) and common
developmental trajectories in different hosts (Toprak et al.
2012). Additionally, organisms with differing properties such
as mutation rates generate data that require field-specific
assumptions to process. The result is that each haplotyping
tool may be ineffective when applied to another data type.

The two current methodologies utilize disparate sources of
genetic information. We expected considerable improve-
ments by integrating them into a reconstructive model
that accurately represents the composition of genetically re-
lated populations. In this work, we present a novel tool,
PoolHapX, which utilizes a multistep framework that balances
cross-host shared information and host-specific information
to jointly and simultaneously reconstruct haplotypes for mul-
tiple samples.

The remainder of this paper is organized as follows.
PoolHapX’s design philosophy, an overview of its algorithmic
framework, and examples of large-scale microorganism stud-
ies that PoolHapX facilitates are outlined in New Approaches.
Thorough comparisons to other tools with both simulated
and real data validating our design philosophy are presented
in Results. As a practical demonstration of experimental ap-
plicability, PoolHapX is applied to a time-series of HIV samples
to elucidate within-host evolutionary dynamics. More exten-
sive descriptions of software and simulation design, including
implementation details and analysis procedures, can be found
in Materials and Methods.

New Approaches

Applications Empowered by PoolHapX
Assumptions
PoolHapX is designed for studies where researchers have se-
quenced microbial genomes in multiple samples and there is
known to be genetic sharing across the samples. For example,
an archetypal data set may be several samples from patients
known to be infected by the same pathogen. In that case,
transmission facilitates pathogen genetic sharing. Another
data set could consist of multiple samples from the same
individual at multiple timepoints during tissue development
or disease progression. In this case, genetic sharing is caused
by the developmental trajectory. We assume that the inves-
tigators are interested in within-host evolution at the haplo-
type scale, as opposed to single-nucleotide polymorphism
(SNP) studies. Unlike previous tools that assume the availabil-
ity of the identities of haplotypes and only estimate frequen-
cies (Long et al. 2011; Albanese and Donati 2017), PoolHapX
can infer haplotype identities (out of the potential 2n candi-
dates, where n is the number of segregating sites). That is why
we claim a de novo haplotype reconstruction. At the mo-
ment, PoolHapX does not aim to assemble reference
genomes de novo such as SPAdes (Bankevich et al. 2012).
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Applicable Organism and Sequencing Protocols
PoolHapX is applicable to any microorganism with a refer-
ence genome, including viruses, bacteria, and protozoans.
PoolHapX is also applicable to the analysis of within-species
haplotypes from metagenomics data, after the sequencing
reads of the focal species are mapped to the corresponding
references. PoolHapX is applicable to NGS data, including
standard short reads as well as barcoded linked-reads, which
was popularized by 10�-Genomics (Zheng et al. 2016; Wang
et al. 2019), and is supported by several other vendors after
10�-Genomics’ suspension of the service (Chen et al. 2020;
Wang et al. 2019).

Design Philosophy of PoolHapX
PoolHapX integrates cross-host shared information (i.e., sta-
tistical LD estimated from population genetic models) and
host-specific information (i.e., physical LD of alleles on the
same genomic reads) in a flexible framework. Here, “pool”
and “host” are both used synonymously, since “host” empha-
sizes the biological source of data and “pool” the experimental
source. Briefly, statistical LD in a population is equivalent to
nonzero correlation between the occurrences of alleles at
different locations, regardless of the biological mechanism
(e.g., recombination, gene conversion, or natural selection).
We use hierarchical multivariate normal distributions to
model and resolve the statistical LD across subgenomic
regions to generate intermediary haplotype fragments.
Physical LD can be observed in paired-end reads or linked-
reads, constraining the combinations of haplotypes that can
occur in specific pools. We utilize this information in two
ways: 1) to generate initial draft haplotypes and 2) to statis-
tically infer final haplotypes using a regularized regression
model. Below, we describe the 4-step algorithm and, intui-
tively, the innovation and benefit of each step, leaving more
details in Materials and Methods as well as supplementary
section II, Supplementary Material online.

Overview of the PoolHapX Algorithm
PoolHapX uses variant calls and read alignments to identify
global haplotypes in each host, and estimate their within-host
frequencies (supplementary fig. 8, Supplementary Material
online). The PoolHapX algorithm is comprised of four steps
embedded in a divide-and-conquer framework. In Step 1,
graph-coloring (Matula et al. 1972) is employed to roughly
cluster sequencing reads into initial draft haplotypes. This
draft set serves as the first step of the divide-and-conquer
process (fig. 1a and supplementary fig. 1, Supplementary
Material online). In Step 2, our hierarchical Approximate
Expectation-Maximization (AEM) algorithm is applied to in-
fer haplotypes in local regions by incorporating information
from multiple hosts. The algorithm starts with the smallest
local haplotypes as the lowest hierarchy (fig. 1b), and then
gradually combines them into successively longer local hap-
lotypes covering larger spans of variant positions (fig. 1b and
supplementary fig. 3, Supplementary Material online). This
process iterates through several rounds until reaching the
top level (representing the largest local region that AEM
can analyze with the available computation memory). In

Step 3, the refined set of local haplotypes from the final iter-
ation of AEM will be stitched to form candidate global hap-
lotypes using a Breadth-First Search (BFS) algorithm (fig. 1c
and supplementary fig. 6, Supplementary Material online).
Finally, in Step 4, the long-range linkage implied in allele fre-
quencies aggregated across all hosts and the short-range link-
age sequencing reads from each pool are innovatively
integrated in a regression model (fig. 1d and supplementary
fig. 7, Supplementary Material online). This regression model
is solved using a regularized objective function (Hazimeh and
Mazumder 2020). The input candidate global haplotypes are
from all the pools (stitched in Step 3), and the regression is
conducted in individual pools sequentially. Then aggregating
in-pool frequencies will lead to the cross-pool global frequen-
cies. This step finalizes the identity and frequency of the global
haplotypes.

The Innovation and Benefit of Each Step
The above four steps incorporate physical and statistical link-
age into a coherent model. Since the techniques were pio-
neered in multiple organismal fields to address their specific
challenges, the integrated PoolHapX model might be difficult
to understand as a whole. We have summarized the innova-
tions and benefits of jointly using these techniques together
below.

The innovation of Step 1 lies in its adoption of a greedy
strategy to form many haplotypes (including potential false
positives) for the downstream analysis, instead of the parsi-
mony principle utilized by most tools based on graph algo-
rithms in viral genomics (Zagordi et al. 2011; Prosperi and
Salemi 2012; Topfer et al. 2014; Baaijens et al. 2017). Due to its
multistep framework, PoolHapX relies on downstream steps
to remove implausible haplotypes. The innovation of Step 2 is
the hierarchical iteration of AEM, an established technique in
human genetics (Kuk et al. 2009). The original AEM calculated
the likelihoods for all 2n haplotypes (Kuk et al. 2009), and is
therefore is not scalable for genome-scale analysis. Step 3 is a
standard divide-and-conquer algorithm, which links subge-
nomic fragments from hierarchical iterative AEM (Step 2)
into full-length candidate haplotypes for Step 4. The innova-
tion of Step 4 lies in both its design and implementation.
Traditional methods based on regressions in haplotype recon-
structions for viruses (Leviyang et al. 2017), plants (Long et al.
2011), and metagenomics (Albanese and Donati 2017) only
utilize allele frequencies at individual segregating sites. In con-
trast, the PoolHapX regularization model integrates both al-
lele frequencies and physical LD between alleles co-occurring
on sequencing reads. To constrain the number of recon-
structed haplotypes, traditional methods solve regressions
using L1 regularization, which do not distinguish between
the correct solution with few haplotypes, and incorrect sol-
utions with many haplotypes. L1-based regression models
assign the same penalty to any reconstructed population as
long as the sum of the allele frequencies is 1.0. To parsimo-
niously narrow down the set of haplotypes comprising a
sample, PoolHapX uses a combination of L0 and L1 regression
penalties based on a cutting-edge L0 solver (Hazimeh and
Mazumder 2020).
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In summary, Steps 1 and 4 utilize host-specific information
(physical linkage), whereas Step 2 iteratively leverages cross-
host linkage-sharing information. Step 3 stitches the subge-
nomic haplotype fragments into full-length haplotype candi-
dates. By building on existing innovations drawn from
multiple fields, PoolHapX aggregates the benefits of multiple
statistical models, and is thus applicable to many data sets.

Results
Using simulated and real data containing tens of haplotypes
in multiple pools, we demonstrate that PoolHapX possesses
the desired properties for being a universally applicable tool
robust to various factors: 1) it is applicable to many fields, and
in particular outperforms state-of-the-art haplotype-recon-
struction tools targeting different domains, that is, virus, bac-
teria, and metagenomics in their respective settings; 2) it is
robust to various scenarios of within-host evolution; 3) it can
reconstruct many whole-chromosome long-range haplotypes
when applied to barcoded linked-reads; and 4) haplotypes
inferred by PoolHapX reveal novel evolutionary insights un-
seen in SNP-based analyses.

Benchmarking PoolHapX with Simulated Data
To test the accuracy and flexibility of PoolHapX in compar-
ison to state-of-the-art haplotyping tools (Kuk et al. 2009;
Pirinen 2009; Prabhakaran et al. 2014; Pulido-Tamayo et al.
2015; Albanese and Donati 2017; Ahn et al. 2018; Knyazev

et al. 2018; Li et al. 2019; Nicholls et al. 2019), we simulated
artificial pools of haplotypes and the sequencing reads gen-
erated from these pools. We then examined PoolHapX
against tools developed for virology (Prabhakaran et al.
2014; Ahn et al. 2018; Knyazev et al. 2018), bacteriology
(Pulido-Tamayo et al. 2015; Li et al. 2019), metagenomics
(Albanese and Donati 2017; Nicholls et al. 2019), and human
genetics (Kuk et al. 2009; Pirinen 2009) (flowchart in supple-
mentary fig. 8, Supplementary Material online). As each dis-
cipline has a specific method for simulating benchmarking
data, we follow their corresponding conventions. For stan-
dardized assessment criteria to consistently compare recon-
struction accuracy, we used two sets of metrics: 1) MCC
(Matthews Correlation Coefficient) þJSD (Jensen–Shannon
Divergence) that were used frequently in metagenomics field
(Luo et al. 2015; Albanese and Donati 2017; Antwis et al. 2018)
and 2) F1-ScoreþCRR (Correctly Reconstructed Rate)þFDR
(False Discovery Rate) (supplementary section IV,
Supplementary Material online) that are used in viral geno-
mics field (Prabhakaran et al. 2014). In the first set of metrics,
we used MCC to measure the similarity between the identi-
ties of simulated “gold standard” and reconstructed haplo-
types, where two identical haplotypes have their MCC¼1
(the larger, the better) (Albanese and Donati 2017), we cal-
culated the MCC of each gold-standard haplotype and the
closest reconstructed haplotype (by Hamming distance), and
averaged the haplotype-MCCs across all of the samples. The

FIG. 1. The PoolHapX algorithm. An example of the PoolHapX algorithm applied to a data set containing reads from three haplotypes 0110, 1010,
and 1001 with proportions 1/2, 1/3, and 1/6, respectively. Input consists of sequence reads (horizontal gray rectangles above) and allele frequencies
of individual (square) and paired (diamond) sites (below). Vertical (dark gray) bars denote the locations of polymorphic sites, and white squares
indicate the presence of alternate alleles. Colored rectangles represent haplotype information inferred by PoolHapX. (a) A graph is formed where
nodes (colored rectangles) are unique reads, and edges (black lines) are drawn between nodes with differing alleles at any polymorphic site. Graph
coloring is applied to differentiate nodes with conflicting alleles (joined by edges), forming initial haplotypes for the next step in the algorithm
(AEM). (b) Hierarchical approximate expectation maximization (AEM) is applied to the initial covariance information derived from graph coloring.
AEM is applied to a variance–covariance matrix representing overlapping local regions (containing four variants in this example). The result is then
extended to a larger region (eight variants) by tiling the local regions (bottom). Here, blue squares indicate positive statistical LD between pairs of
variants, and red indicates negative LD. (c) Haplotype segments from the final iteration of AEM are combined into a tree (top), whose branches
represent when two adjacent segments have identical alleles in their overlapping regions (multicolored rectangles at bottom). Breadth-first tree
search (BFS) is used to exhaustively search all possible branches to form global haplotypes. (d) A regularized (L0þL1) regression is used to estimate
haplotype frequencies (height of rectangles above) from the individual (square) and paired (diamond) allele frequency information (below). More
detailed illustrations of the algorithms are in supplementary figures 1–7, Supplementary Material online.
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gold-standard haplotype and reconstructed haplotype were
considered as vectors composed of 0 and 1 s, and pairs of
matched and mismatched alleles were counted as true-
positives, false-negatives, etc. (Luo et al. 2015; Albanese and
Donati 2017; Ahn et al. 2018). We used JSD to measure the
difference between frequencies of simulated and recon-
structed haplotype distributions for each host in the simu-
lated data set, where two identical distributions have JSD¼0
(the smaller, the better). In the second set of metrics, we first
define the True Positive as the haplotypes that are correctly
identified, and then define F1, CRR, and FDR using standard
conventions (supplementary section IV, Supplementary
Material online). Figure 2 shows the results of this comparison
using MCC/JSD, and supplementary section VII figures 15 and
16, Supplementary Material online, presents the same com-
parison in terms of F1-Score/CRR/FDR. A brief description of
each domain is provided below. Details of the simulations are
presented in the supplementary section III and online meth-
ods, Supplementary Material online, and outcomes with
more parameters, showing similar trends, are presented in
supplementary figures 12–14, Supplementary Material online.

Viruses and Bacteria
In the field of viral/bacterial haplotype reconstruction, cross-
host linkage sharing was not used as a source of information,
despite literature evidence demonstrating extensive conser-
vation in some genomic regions even after transmission takes
place (Mak et al. 2020). As a result, when conducting com-
parisons, the authors of other tools usually formed only one
pool of gold standard haplotypes in each round of simulation.
A reference genome is used as a template, and variants are
randomly simulated with prespecified density of SNPs to
form the gold standard haplotypes. Multiple densities are
used to benchmark performance with diverse configurations
of data, reflecting variable mutation rates in different environ-
ments (Metzgar and Wills 2000). In general, high SNP density
(between 0.5% and 2.0%) for viruses (Prabhakaran et al. 2014),
and a lower range for bacteria (between 0.005% and 0.02%) (Li
et al. 2019) are used. Our procedure is similar, except that we
simulated multiple pools with some haplotype sharing be-
tween them, and reconstructed haplotypes across the pools
simultaneously.

It should be noted that our approach explicitly models
haplotype sharing between hosts, which PoolHapX is natu-
rally designed for. This led to relatively better performance
than other tools designed for single pools of data. To accu-
rately simulate linkage sharing between pools, we used SLiM
(Haller and Messer 2019) to simulate haplotypes under stan-
dard island models, where genomes mutate, recombine, and
replicate in their own island and occasionally migrate to other
islands. We embedded the simulated variants into a viral ref-
erence genome.

For viruses, we chose the human immunodeficiency virus
(HIV), which is well known for its ability to form large and
genetically heterogeneous within-host viral populations
(Lauring and Andino 2010). Multiple haplotypes were pooled
and the simulated sequencing reads were processed using a

FIG. 2. Comparison between PoolHapX and existing tools. For all
panels, the upper half shows the accuracy for haplotype identity
(MCC) and the lower half shows the accuracy for haplotype fre-
quency (JSD). The x axis denotes number of segregating sites in the
haplotype. Boxes extend to the first and third quartile; whiskers ex-
tend to the upper and lower values. (a–c) Number of pools¼50. (a)
Tools to reconstruct viral haplotypes, TenSQR, PredictHaplo, and
CliqueSNV. Sequencing coverage per pool¼5,000�. Number of hap-
lotypes for 50 loci, 100 loci, and 200 loci are 41, 73, and 42, respectively.
(b) Tools to reconstruct bacterial haplotypes, Bhap, and EVORhA.
Coverage¼250. Number of haplotypes for 50 loci, 100 loci, and 200
loci are 42, 43, and 43, respectively. (c) Tools to reconstruct haplo-
types for metagenomics, Gretel, and StrainEst. Coverage¼25�.
Number of haplotypes for 50 loci, 100 loci, and 200 loci are 39, 37,
and 36, respectively.
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modified version of the GATK best practice pipeline (DePristo
et al. 2011) to discover variants. Details can be found in sup-
plementary section IV, Supplementary Material online. We
chose three representative viral sequencing tools for compar-
ison: TenSQR (Ahn et al. 2018), PredictHaplo (Prabhakaran
et al. 2014), and CliqueSNV (Knyazev et al. 2018). The details
of how we run these tools are presented in supplementary
section V, Supplementary Material online. Evidently,
PoolHapX outperformed these alternatives not only in the
mean of the MCC and JSD values, but also their variances
(fig. 2a and supplementary fig. 12, Supplementary Material
online). When sequencing coverage was high (¼5,000�), as
well as the SNP density, PoolHapX performed similarly to
other tools in terms of the mean MCC, but with much smaller
variance of MCC and also significantly better JSD that repre-
sents the abundance of haplotypes (fig. 2a). When sequencing
coverage was low, the performance of other tools decreased
rapidly relative to PoolHapX (supplementary fig. 12a–d,
Supplementary Material online). The comparison using F1-
Score/CRR/FDR shows the same trend between the viral tools
under comparisons (supplementary figs. 15a–d and 16a–d,
Supplementary Material online).

We are not able to directly use a commonly cited real data
set with a single pool containing only five HIV strains
(Giallonardo et al. 2014) because PoolHapX is designed to
utilize genetic sharing among multiple pools. Instead, we gen-
erated a mocked data based on the five HIV strains (HIV-
1HXB2, HIV-189:6, HIV-1JR-CSF, HIV-1NL4-3, and HIV-1YU2) to
mimic the multipool configuration. We randomly selected
five breakpoints in the five templates and generated recombi-
nants by simulating recombination using the breakpoints.
Out of all recombinants, we randomly selected 25 haplotypes
as the “gold standard” haplotypes. Then 25 pools are formed
by mixing the gold-standard haplotypes and the in-pool
abundance of each “gold standard” haplotype is randomly
assigned. The outcome is presented in supplementary figure
17, Supplementary Material online, showing that PoolHapX
significantly outperforms alternatives in terms of both MCC/
JSD metrics and F1/CRR/FDR metrics. In a concurrent study,
we used this 5-strain data set to compare our single-host tool,
WgLink, that only uses single-host sequencing to existing
tools (Cao et al. 2021). We showed that our strategy of
divide-and-conquer and L0þL1-regularization with cross-
host information is capable of outperforming alternative tools
by a large margin (Cao et al. 2021).

For bacteria, we used a chromosome of Vibrio cholerae O1
biovar El Tor str. N16961 (Chr-2, length¼1.07 Mb), a strain of
the bacterium V. cholerae and the causative agent of cholera
(Cvjetanovic and Barua 1972) as the template reference ge-
nome. We used a lower SNP density (¼0.005% to 0.02%) to
match the bacterial genomes (Pulido-Tamayo et al. 2015) and
to be comparable to the simulation procedures of competing
tools, that is, Bhap (Li et al. 2019) and EVORhA (Pulido-
Tamayo et al. 2015). Despite the very different simulation
parameters and reference genome in the simulations of vi-
ruses and bacteria, we observed similarly good performance
in contrast to other tools using both MCC/JSD metrics (fig. 2b
and supplementary fig. 12e–h, Supplementary Material

online) and Fi-Score/CRR/FDR metrics (supplementary figs.
15e–h and 16e–h, Supplementary Material online).

In the field of metagenomics there is no established tool to
infer haplotypes de novo without utilizing template referen-
ces of known strain sequences. Note that we still rely on
reference genome for the species, instead of assembling
genomes of novel species completely de novo. Gretel, a re-
cently developed tool (Nicholls et al. 2019), requires high SNP
density so that each SNP is within a sequencing read length of
the next adjacent SNP. We simulated data to facilitate the
requirements of Gretel to ensure it is runnable (although this
is not a requirement of PoolHapX). We also selected StrainEst
(Albanese and Donati 2017), a representative tool for strain-
identification, to demonstrate whether tools that utilize tem-
plates of known strains may work for fine-scale haplotype
identification. This was likely an unfair comparison, due to
the lack of template references for known strains in our
simulations. We used sequences from Escherichia coli, a typ-
ical bacterium for meta-genomics studies. In these two cases,
the sequencing coverage was substantially lower than dedi-
cated single-species sequencing (¼25�). Evidently, PoolHapX
outperformed Gretel, and StrainEst did not work well when
templates were unavailable in terms of both MCC/JSD (fig. 2c
and supplementary fig. 12i–l, Supplementary Material online)
and F1-Score/CRR/FDR (supplementary figs. 15i–l and 16i–l,
Supplementary Material online).

In order to figure out the contributions of different mod-
ules in PoolHapX, we also analyzed simulated bacteria data
using partial algorithm of PoolHapX without the last step of
regularization. The outcome is depicted in supplementary
figure 18, Supplementary Material online, showing substantial
improvement achieved by the final step that is critical in
linking segmental haplotypes.

PoolHapX Performance in Evolutionary Scenarios and
Linked-Reads
The above simulations in four domains show that PoolHapX
is universally applicable across species and is robust to se-
quencing data with varying properties. However, except in
the domain of human GWAS, existing tools do not explicitly
utilize sharing across hosts. Since hosts of microbes can exert
different evolutionary pressures to generate host-specific hap-
lotypes, this can cause a biased outcome from models that
use cross-host sharing. To test whether the PoolHapX module
utilizing within-host physical LD can correct for this bias, we
used SLiM to simulate data under three common evolution-
ary scenarios in population genetic analyses: positive selec-
tion, negative selection, and selective sweeps (supplementary
section III, Supplementary Material online). Our analysis of
these data indicated that PoolHapX is robust to host-specific
haplotype patterns caused by evolution, measured by both
MCC/JSD (fig. 3 and supplementary fig. 13, Supplementary
Material online) and F1-Score/CRR/FDR (supplementary figs.
19 and 20, Supplementary Material online).
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Single-Molecule Linked-Reads
We further tested PoolHapX’s capabilities on single-molecule
linked-reads. Based on a template of chromosome 1 of the
unicellular green algae Ostreococcus lucimarinus (genome
length of 1.15 Mb), we simulated approximately 20 gold stan-
dard haplotypes with 570 SNP positions. Using the 10�
Genomics linked-read simulator LRSim (Luo et al. 2017),
with default settings of fragment length (¼50 kb) in each
droplet and number of linked-reads per fragment (on average
67), we simulated 10� Genomics linked-reads at various se-
quencing depths and numbers of pools. On average,
PoolHapX achieved MCC � 0.75 and JSD � 0.25 (fig. 4),
F1-score around 0.75–1.0, CCR around 0.75–1.0 and FDR
around 0.25 (supplementary fig. 21, Supplementary Material
online). These results are comparable to other PoolHapX
results when inferring shorter haplotypes using standard
Illumina paired-end reads based on short-fragment DNA
molecules. This outcome turns the promise of “single-cell”
DNA sequencing into reality, enabling pathogen biologists
to study within-host evolutionary changes at the individual
molecule level.

Applications to Real Data
Infections with the haploid malaria parasite Plasmodium vixax
(Genome size¼ 22 Mb) are known to contain multiple gen-
otypes, which influence disease severity (Pacheco et al. 2016).
These “multiclonal infections” may derive from infection by a
single mosquito bite carrying multiple strains, with meiotic
recombination in the vector. Alternatively, they may be due
to multiple infections from different mosquitos carrying dif-
ferent strains. Accurate whole-genome haplotype reconstruc-
tion will distinguish between these alternatives. We
challenged PoolHapX with a collection of 49 Plasmodium
vivax genome sequences (supplementary section VI,
Supplementary Material online) to demonstrate its applica-
bility on many pools of eukaryotic organisms with midsized
genomes (Carlton 2003). To achieve this, we split the P. vivax
genome into windows of 150 SNPs. PoolHapX took on aver-
age 54.79 CPU-hours per chromosome to conduct all com-
putations. On average we found 3.3 inferred haplotypes per
region per individual (supplementary table 3, Supplementary
Material online), consistent to expectations of existence of
multiplicity of infections (Pacheco et al. 2016), although our
inferred numbers of haplotypes are larger. It should be noted
that the original study only counted a sample as multiply
infected if more than one allele peak was called from PCR-
based fluorescent signals. Since we are considering the entire
P. vivax genome instead of a set of microsatellite loci, our
approach will naturally find more haplotypes. Whether the
whole-genome haplotypes originated from a single or multi-
ple infection is dependent on the genetic and transmission
properties of P. vivax itself, and indeed, for any pathogen. The
distribution of haplotype frequencies along the chromosomes
is shown in supplementary figure 9, Supplementary Material
online.

To compare the de novo reconstructed haplotypes with
strains inferred by a template-based method in metagenom-
ics, we reanalyzed a meta-genomics data set collected from a

FIG. 3. PoolHapX is robust to the within-host changes due to selective

forces. The three evolutionary forces are: (a) negative selection, number

of haplotypes for 50 loci, 100 loci, and 200 loci are 36, 36, and 45,

respectively, (b) positive selection, number of haplotypes for 50 loci,

100 loci, and 200 loci are 41, 50, and 104, respectively, and (c) selective

sweep, number of haplotypes for 50 loci, 100 loci, and 200 loci are 23, 36,

and 27, respectively. All three panels are comparing with viral tools, that

is, TenSQR, PredictHaplo, and CliqueSNV. All data are simulated under

coverage of 5,000�, and 50 pools. The y axis is the same as figure 2.
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gastrointestinal microbiome undergoing shifts in species and
strain abundance (Sharon et al. 2013). The original publica-
tion suggested that the abundance of Staphylococcus epider-
midis is primarily controlled by phages 13, 14, and 46 through
the mecA gene. Based on StrainEst (Albanese and Donati
2017) (supported by templates of known strains), other
researchers analyzed the same data and inferred the identities
and frequencies of the three strains in question (Albanese and
Donati 2017), which we were able to replicate (fig. 5a). We
have reanalyzed the same data by reconstructing fine-scale
haplotypes. The S. epidermidis genome was divided into 110
fragments (100 SNPs per fragment). The average number of
haplotypes for each fragment was 9.3, although this value
changed at different time points (supplementary table 4,
Supplementary Material online). All fragmentary haplotypes
are aligned back to the three main strains (supplementary
section VI, Supplementary Material online) to examine the
aggregated haplotype frequencies of each strain. By averaging
all 110 regions, the aggregated frequencies (from PoolHapX)
were found to follow the same pattern of changes as these
three strains (fig. 5b). This demonstrates that PoolHapX cor-
rectly identified haplotypes through de novo inference, with-
out the use of reference templates from known strains, as
required by StrainEst.

To demonstrate how PoolHapX can be used to discover
novel evolutionary events, we tested PoolHapX on bulk-
sequencing data from a recent intrapatient HIV study
(Zanini et al. 2015). This data set contains longitudinal sam-
ples from multiple time points for 10 patients. We analyzed
patient number 1, which contains the most time points (12).
We inferred haplotypes using PoolHapX, and observed two
main haplotypes at time point 1, and 10–13 main haplotypes
at the rest time points (supplementary table 5,
Supplementary Material online). We then calculated several

extended haplotype homozygosity-related (EHH) summary
statistics (Sabeti et al. 2002), which measure linkage disequi-
librium across a population by quantifying the probability
that two randomly chosen particles are identical by descent
in a certain region (see rationale in supplementary section VI,
Supplementary Material online). Outlier values of the area
under the EHH curve indicate that selective sweeps may
have occurred (supplementary section VI, Supplementary
Material online). Although the size of linkage blocks decayed
extremely rapidly postinfection in all genes (fig. 6a and b;
supplementary fig. 10, Supplementary Material online), it
did not decrease monotonically as the HIV population
adapted to the within-patient environment. To further quan-
tify the rate and dynamics of selection within each gene, we
plotted the size of windows with EHHS�0.5 at all time points
and for multiple genes in the reconstructed haplotypes. The
genes gag, responsible for assembly and structure, and pol,
responsible for genetic reproduction (Könny}u et al. 2013), are
pictured in figure 6c and d (other genes in supplementary fig.
11, Supplementary Material online). Within gag and pol, there
was substantial heterogeneity in average window size over
time, with the downstream regions of gag and pol largely
fluctuating between 0 and 250 bp (fig. 6c and d). These
regions were highly conserved due to their respective roles
in the HIV life cycle (Mayrose et al. 2013).

We have conducted a search for regions of positive selec-
tion between reconstructed haplotypes at adjacent time-
points, where selective sweeps could have taken place.
There are regions that are recurrently swept, most notably
in the region of the gag polyprotein gene that encodes the
p24 protein (supplementary table 7, Supplementary Material
online). The occurrence of sporadic but reoccurring selective
sweeps in gag, specifically p24, can be attributed to the ap-
pearance of cytotoxic T-lymphocytes (CTL) escape muta-
tions, which reduce the ability of CTL to target virus-
infected cells (Prince et al. 2012). However, these escape
mutations also decrease the replicative capacity of the virus,
and a larger mutational burden corresponds to a greater de-
crease in capacity (Chopera et al. 2008; Wright et al. 2012). As
such, episodic periods of positive selection at the same loca-
tion would allow successful escape mutations to rise to fixa-
tion occasionally, while still allowing for genetic diversity to
accumulate between selective sweeps.

Discussion
PoolHapX seamlessly integrates statistical and physical linkage
information into a flexible but powerful framework for hap-
lotype reconstruction. We have shown that PoolHapX pro-
duces more accurate haplotype reconstructions and
frequencies than any other tool to date, and is robust to
dynamics generated by within-host evolution. From the anal-
ysis of P. vivax, S. epidermidis, and HIV data, we show that
PoolHapX is scalable, accurate, and infers haplotype data that
is valuable for understanding the within-patient diversity of
pathogens.

One of our main algorithms, AEM is borrowed from hu-
man genetics. In early genome-wide association studies

FIG. 4. PoolHapXþsingle-cell linked-reads. MCC and JSD of PoolHapX
applying to simulated 10� linked-reads using based on combinations
of different number of pools (25,50) and sequencing coverage (100,
250).
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(GWAS) for humans, DNA from multiple individuals was ar-
tificially pooled to save on genotyping costs. Subsequently, in
silico methods were applied to the pooled sequencing data to

reconstruct haplotypes (Kuk et al. 2009; Pirinen 2009) for
association mapping. Though technological advancements
have made this cost-saving practice unnecessary, as a

FIG. 5. Staphylococcus epidermidis strain abundance calculated de novo by PoolHapX (a) and StrainEst based on templates of known strain (b) for
early stages of infant gut colonization. All haplotypes predicted by PoolHapX are aligned to the three strains and we observe the same pattern of
the changes of these three strains.

FIG. 6. (a and b) The decay of EHHS around each SNP position in reconstructed HIV-1 haplotypes occurs rapidly during the acute phase of
infection. The dashed red line indicates the location of the focal SNP position. (a) Position 1377 (Gag gene, found in p2 protein). (b) Position 3530
(Pol gene, found in p15). (c and d) The size of windows of EHHS 3 0.5 fluctuate around gene-specific averages. The solid red line indicates a weighted
mean across the positions in the gene. DPI refers to estimated days postinfection. Each dot represents the window size around at least one position.
(c) Gag. (d) Pol. The legend (right) indicating the color corresponding to each time-point is common to panels a–d.
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theoretical assessment, we compared PoolHapX against the
GWAS-based haplotype reconstruction tools Hippo (Pirinen
2009) and AEM (Kuk et al. 2009). Since there are many pub-
licly available human genomes we did not simulate haplo-
types, instead making artificial pools using phased haplotypes
from the 1000 Genomes Project (Consortium 2015) (supple-
mentary section III, Supplementary Material online).
Supplementary figure 14, Supplementary Material online,
show that PoolHapX slightly outperformed alternative tools
when there were relatively few SNPs. When there were many
SNPs (>¼25) in a region, however, the other tools did not
finish in two weeks (using an HPC node with 48 Gb memory),
whereas PoolHapX could still produce reliable results with a
large region containing as many as 200 SNPs in a few hours.

The main novelty of PoolHapX stems from the sharing of
haplotype information across pools. PoolHapX performance
is sensitive to the number of pools and number of haplotypes.
Accordingly, we have investigated this issue using HIV as an
example. By fixing the number of global haplotype as 25 and
specifying the number of simulated pools from 3 to 100, we
conducted analysis and used both MCC/JSD and CRR/FDR/
F1-score to assess the decrease of accuracy proportional to
the number of pools (supplementary fig. 22, Supplementary
Material online). It is observed that the performance may not
be satisfactory when the number of pools�5 (supplementary
fig. 22, Supplementary Material online). Similarly, we con-
ducted simulations by fixing the number of pools to 25 and
looked at the impact of the number of haplotypes (supple-
mentary fig. 23, Supplementary Material online). It appears
that the accuracy is satisfactory when the number of global
haplotypes �40. These results provide some guidelines for
the analysis of viral genomic data.

This implementation of PoolHapX has some limitations. We
found that the method is sensitive to the inferred within-host
allele frequency, and therefore high variance in allele frequency
caused by very low sequencing coverage will result in high error
rates. The performance of PoolHapX is also variable when we
attempt to infer frequencies of more than 50 haplotypes in the
pools. However, if we aim only to assess a smaller number of
more abundant haplotypes (e.g., 10–20), it is robust to noise
caused by rare haplotypes (figs. 2 and 3). Another limitation is
that PoolHapX is not able to handle very large structural variants
for the moment, whereas small indels can be handled in the
same way as point mutations (SNPs). PoolHapX does not take
the quality score of variant calls into account when reconstruct-
ing haplotypes, though several tools do (Prabhakaran et al. 2014;
Ahn and Vikalo 2018; Ahn et al. 2018).

At present, PoolHapX is in continuing development, with
ongoing work to integrate third-generation sequencing data
(Check Hayden 2009) into PoolHapX, as well as algorithms
using genomic assembly (Bankevich et al. 2012) to improve
haplotypes.

Materials and Methods

Graph Coloring Algorithm
If two sequencing reads cover the same genetic segregating
site but carry different alleles, it is certain that they do not

belong to the same haplotype. Based on this observation, we
build a graph<V, E> in which every read is a node v. For two
nodes v1 and v2, we put an edge e1,2 between them if and only
if we have information to claim they are not on the same
haplotype. Then, the haplotyping problem becomes a graph-
coloring problem: where each node (i.e., each read) is assigned
a color, such that nodes linked by edges are colored differ-
ently. This ensures that reads belonging to different haplo-
types are colored differently. After conducting this graph-
coloring problem, we effectively estimate haplotypes by col-
lecting reads of the same colors. As the standard parsimony
algorithm is too slow when the number of reads is large, we
have implemented a greedy algorithm to color this graph
(supplementary section II, Supplementary Material online).
The spatial complexity of our graph coloring is O(n2) and
the time complexity is O(n2). The outcome of graph-
coloring forms starting states for the whole pipeline in two
respects. First, by collecting all reads of the same color,
PoolHapX can generate segments of local haplotypes as the
initial input to the next step, the Hierarchical AEM algorithm.
Second, the gaps between local haplotypes naturally inform
the initial divide and conquer plan for subsequent steps (sup-
plementary section II, Supplementary Material online).

Hierarchical AEM Algorithm
The basic version of AEM algorithm, as described in (Kuk et al.
2009), builds upon the multivariate normal (MVN) distribu-
tion. The LD between all pairs of n segregating sites is mod-
eled as the variance–covariance matrix of an MVN
distribution. Initially, all 2n possible haplotypes will be assigned
to the same frequency (1/2n). Then in an iterative procedure,
the likelihood ratio of observing the data with or without the
presence of each haplotype is estimated using the MVN den-
sities. These ratios are called “Importance factors” (Kuk et al.
2009), indicating the importance of the individual haplotypes,
and will be used to adjust their haplotype frequencies. This
adjustment is conducted iteratively until the haplotype fre-
quencies converge (supplementary section II, Supplementary
Material online).

In our adaptation of AEM, we have made the following
three modifications. First, the initial haplotype configuration
is no longer a uniform distribution of all 2n haplotypes.
Instead, using the haplotypes gained from graph coloring,
haplotypes with higher sequence coverage start with a higher
initial frequency. As a consequence, many potential haplo-
types that are not observed in graph coloring will have zero
frequency. Although the spatial complexity of AEM remains
O(n2) and the theoretical time complexity remains O(n3�2n),
the number of required iterations are substantially reduced in
practice due to the initial configuration being closer to the
truth. Second, we use a divide and conquer algorithm to scale
up the original AEM algorithm to larger regions, so that we
run AEM in a hierarchical manner. The shorter haplotypes
inferred from the previous AEM iteration are used in the next
round of AEM to form longer haplotypes (supplementary figs.
3 and 1a, Supplementary Material online). In each round,
local regions are designed to have half of their segregating
sites overlap with the next region (supplementary fig. 5,
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Supplementary Material online), in order to form tiling win-
dows that can be stitched together at the next hierarchical
level. Third, the original AEM is not robust to numerical in-
stability if the denominator in the likelihood ratio is close to
zero. However, this problem occurs more frequently in larger
regions with sparse nonzero LDs in the covariance matrix. We
have fixed this by adjusting the calculation of the likelihood
(supplementary section II, Supplementary Material online).

Breadth-First Search
The iterative AEM algorithm generates successively larger re-
gional haplotypes until an upper limit is reached, which is 96
segregating sites by default. PoolHapX will then attempt to
resolve global haplotypes. The outcome of the last AEM iter-
ation is a set of local haplotypes that span tiling windows,
with many potential combinations that form global haplo-
types. To resolve global haplotypes, we model the local
regions as a tree, with each local haplotype as a node.
Haplotypes from the first region of the genome form the first
level of the tree, whereas haplotypes from the next tiling
region form the nodes of the next level. If two haplotypes
in adjacent regions have the same alleles in their overlapping
segments, we add an edge linking these two nodes. Traversing
the resulting tree generates an exhaustive set of all plausible
combinations of local haplotypes, which forms the set of
candidate global haplotypes. We implement a standard BFS
algorithm (Cormen et al. 2009) to conduct this traversal.
Finally, we filter out some global haplotypes that are incon-
sistent with the sequencing reads (supplementary section II,
Supplementary Material online).

Global Regularization Model
Given all candidate global haplotypes from the BFS step, we
use an innovative regression model to estimate the within-
host global haplotype frequencies in each pool:

Y �
X

biXi;

where bi is the frequency of the i-th global haplotype in the
host (pool). Here, Y and Xi are the independent and predictor
variables in a standard regression model. We use two types of
samples to train Y from Xi, which represent two different
sources of data: minor allele frequency and physical LD.
Mathematically, the dimension of Y is nþ n(n�1)/2 (where
n is the number of sites), representing the alternate frequency
at n sites and their n(n�1)/2 physical LD across pairs of sites
observed in the reads. First, at each site, the sum of frequen-
cies of haplotypes containing the alternate allele should be
statistically similar to the observed alternate allele frequency
based on reads from the pool. This is the same information
utilized by several other tools (Pulido-Tamayo et al. 2015;
Albanese and Donati 2017). An innovation of our design is
the use of a second type of sample: for each pair of sites, the
sum of frequencies of haplotypes containing both alternate
alleles should be equal to the frequency observed in the num-
ber of reads that cover both alternate alleles in the pool,
which includes read-pairs and many barcoded reads in 10�
linked-reads (supplementary fig. 7, Supplementary Material

online). A full description is in (supplementary section II,
Supplementary Material online). The set of bi that best fits
these two sets of constraints is our solution.

To reduce overfitting, the objective function for training
the above regression is designed as a combination of L0 and
L1:

Obj b
!� �
¼ jjY � bYjj2 þ ajjb

!
jj0 þ cjjb

!
jj1;

where jjb
!
jj1 is the L1-norm, which is the sum of absolute

values of all bi; and jjb
!
jj0 is the L0-norm, which is the

number of nonzero bi.
Several existing papers use L1 regularization alone

(Albanese and Donati 2017; Leviyang et al. 2017) This strategy
does not work for many haplotypes with small differences.
This is because L1 penalizes the sum of absolute values of all
regression coefficients, that is, the haplotype frequencies in
each pool. If the inference method is reasonably designed,
however, the sum of haplotype frequencies in a host will
always be near 1.0. This is because convex optimization-
based penalties only prevent outcomes with negative fre-
quencies, and do not distinguish between outcomes contain-
ing few haplotypes with large frequencies and outcomes
containing many haplotypes with small frequencies. In es-
sence, L1 does not produce sparse solutions when the differ-
ence between haplotypes is small, such as samples that arise
when within-host recombination generates many similar
haplotypes with small regions of genetic differences. To fur-
ther enforce parsimony, adding a layer of L0 regularization
further regularizes the number of haplotypes. This is why L0
regularization is necessary for our method, although it is
much slower. Fortunately, The L0Learn package (Hazimeh
and Mazumder 2020) a breakthrough in the field of computer
science to solve L0-based optimization is available recently,
which empowered PoolHapX to conduct this inference.
Indeed, our preliminary development toward viral haplotype
reconstruction in a single host (that does not utilize cross-
host sharing as PoolHapX does) show that such L0þL1-reg-
ularization is very fast (Cao et al. 2021). Finally, the cross-host
(i.e., population) frequencies of each haplotype can be formed
by combining the within-host frequencies.

HIV Evolutionary Data Analysis
For a description of Patient 1 data, the SNP position-calling
pipeline, and haplotype reconstruction, see supplementary
section VI, Supplementary Material online.

The R package rehh (version 3.0) was applied to survey
linkage patterns within a single time-point, and changes to
linkage patterns across the duration of infection monitoring
(Gautier and Vitalis 2012). Several long-range haplotype-
based evolutionary statistics related to extended haplotype
homozygosity (EHH) (Sabeti et al. 2002) were used to quantify
the type and magnitude of selection. To search for regions of
positive selection within the reconstructed genome, inte-
grated haplotype score (iHS) (Voight et al. 2006) and cross-
population EHH scores (XP-EHH) were calculated for each
time-point and between each time-point, respectively.
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For more details about the rationale behind each layer of
analysis, see supplementary section VI, Supplementary
Material online. The scripts that generate MS (Ewing and
Hermisson 2010) output format from PoolHapX output files
and apply EHH-based statistics to the reconstructed haplo-
types are available at (https://github.com/theLongLab/
PoolHapX/tree/master/Simulation_And_Analysis/HIV_analy-
sis_code). Parameters and settings are described in further
detail within the scripts.

Other Data Analyses
Processing and analyses of Plasmodium and other metage-
nomic data (E. coli) can be found in supplementary section VI,
Supplementary Material online. Details of simulations and
comparisons (including how other tools are executed) are
also included in supplementary sections III and IV,
Supplementary Material online.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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